Page 32 -
P. 32

โครงการหนังสืออิเล็กทรอนิกส์ เฉลิมพระเกียรติสมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี




                       การวิเคราะหทางจลนพลศาสตร                                                       23





                              สําหรับการหาคาครึ่งชีวิตโดยอาศัยสมการใดสมการหนึ่ง  ตั้งแตสมการ (2.11)  ถึง (2.14)
                       ในวิธีที่ 1 หรือ สมการ (2.15) ถึง (2.18) ในวิธีที่ 2 จะไดครึ่งชีวิตที่เคยแสดงมาแลวในสมการ (2.5)

                       คือ

                                                   t 1/2   =      ln  2  =       0.693            (2.5)
                                                                   k
                                                                                   k

                       จะเห็นวาครึ่งชีวิตของปฏิกิริยาอันดับหนึ่งเปนคาคงที่และไมขึ้นกับความเขมขนเริ่มตน สวนเวลาใน

                       การรีแลกซ (relaxation time, τ ) = 1/k  เปนคาคงที่ของปฏิกิริยาอันดับหนึ่งเทานั้น และ τ  เปน

                       เวลาที่ทําใหความเขมขนของสารตั้งตนลดลงเปน 1/e  เชน [A] =  [A] /e
                                                                           τ
                                                                                  0


                              2.3.3  ปฏิกิริยาอันดับสองของสารตั้งตนชนิดเดียว

                                                                    ′ k
                              ตัวอยางเชน ปฏิกิริยา     aA      ⎯ ⎯→      products    มีอันดับสอง

                       วิธีที่ 1

                                                           ] A [ d

                       ใชสมการ (2.1) และ k = k′a,    –           =      k [A]
                                                                              2
                                                         dt
                                                     [A]  d[A]             t
                       จัดรูปใหมและอินทิเกรต จะได –  ∫    2   =        k  dt
                                                                           ∫
                                                     [A] 0  [A]            0
                                                     1     1
                                                        –       =        k t                      (2.19)
                                                    [A] [A]  0


                       เมื่อสรางกราฟแสดงความสัมพันธระหวาง [A] และ t ของปฏิกิริยาอันดับสอง จะไดกราฟแสดงการ

                       สลายตัว  ดังรูปที่ 2.3.ก  ซึ่งเปนการยากในการแยกความแตกตางระหวางปฏิกิริยาอันดับสองจาก

                       ปฏิกิริยาอันดับหนึ่ง (รูปที่ 2.2.ก)  ดังนั้นในการจําแนกปฏิกิริยาอันดับตางๆ  จึงมักแสดง
                                                                                      1
                       ความสัมพันธในเชิงกราฟเสนตรง เชน กราฟแสดงความสัมพันธระหวาง     และ t ของปฏิกิริยา
                                                                                     [A]
                       อันดับสองเปนกราฟเสนตรงที่มีความชันเปน k ดังรูปที่ 2.3.ข
   27   28   29   30   31   32   33   34   35   36   37