Page 98 -
P. 98

ิ
                                                ์
                                                                   ิ
                  โครงการหนังสออเล็กทรอนกสด้านการเกษตร เฉลมพระเกียรตพระบาทสมเด็จพระเจ้าอยู่หัว
                                 ื
                                    ิ
                                                                              ิ


                Boller R, Schroeder H. Influence of relative humidity on production of aflatoxin in rice by Aspergillus
                    parasiticus. Phytopathology. 1974;64:17–21

                Calvo-Garrido C, Teixido N, Roudet J, Vinas I, Usall J, Fermaud M. Biological control of Botrytis bunch

                    rot in Atlantic climate vineyards with Candida sake CPA-1 and its survival under limiting conditions

                    of temperature and humidity. Biol Control. 2014;79:24–35
                Calvo J, Calvente V, de Orellano ME, Benuzzi D, de Tosetti MIS. Improvement in the biocontrol of

                    postharvest diseases of apples with the use of yeast mixtures. BioControl. 2003;48:579–593

                Chlebicz A, Slizewska K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and

                    zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast.

                    Probiotics Antimicro. 2019;12(1):289–301                                                             บทที่ 3
                Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C. Volatile organic compounds (VOCs)

                    produced by biocontrol yeasts. Food Microbiol. 2019;82:70-74

                Di Francesco A, Ugolini L, Lazzeri L, Mari M. Production of volatile organic compounds by Aureobasidium

                    pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control.
                    2015;81:8–14

                Dorner JW. Biological control of aflatoxin contamination in corn using a nontoxigenic strain of Aspergillus

                    flavus. J Food Prot. 2009;72(4):801–804

                Ehrlich KC. Non aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages

                    and limitations. Front Microbiol. 2014;5:50;doi: 10.3389/fmicb.2014.00050.
                Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, Hassan ZU, Jaoua S, Migheli Q.

                    Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A.

                    ochraceus. Int J Food Microbiol. 2018;284:1–10

                FDA.  2020.  Chemical  harzards.  Available  in:  https://www.fda.gov/animal-veterinary/biological-

                    chemical-and-physical-contaminants-animal-food/chemical-hazards. Accessed on 30 April. 2020.
                Guchi E. Implication of aflatoxin contamination in agricultural products. Am J Food Nutr. 2015;3(1):12–20

                Henry SH, Bosch FX, Troxell TC, Bolger PM. Reducing liver cancer-global control of aflatoxins. Science.

                    1999;286(5449):2453–2454

                Hua SST, Baker JL, Flores-Espiritu M. Interactions of saprophytic yeasts with a nor mutant of Aspergillus

                    nidulans. Appl Environ Microbiol. 1999;65(6):2738–2740
                Hua SST, Beck JJ, Sarreal SBL, Gee W. The major volatile compound 2-phenylethanol from the biocontrol

                    yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus

                    flavus. Mycotoxin Res. 2014;30(2):71–78



                                                          การประยุกตใชยีสตเพื่อการเกษตรและอุตสาหกรรมยุคใหม      89
   93   94   95   96   97   98   99   100   101   102   103