Page 119 -
P. 119
92
92
92 92
92
พันธุศาสตร์ประชากรกับการปรับปรุงพันธุ์
พันธุศาสตร์ประชากรกับการปรับปรุงพันธุ์ พันธุศาสตร์ประชากรกับการปรับปรุงพันธุ์ พันธุศาสตร์ประชากรกับการปรับปรุงพันธุ์ พันธุศาสตร์ประชากรกับการปรับปรุงพันธุ์
อิทธิพลของประชากรขนาดเล็ก (genetic drift) จะเห็นได้ว่าการเปลี่ยนแปลงความถี่ของยีนที่เกิดจาก
อิทธิพลของประชากรขนาดเล็ก (genetic drift) จะเห็นได้ว่าการเปลี่ยนแปลงความถี่ของยีนที่เกิดจากอิทธิพลของประชากรขนาดเล็ก (genetic drift) จะเห็นได้ว่าการเปลี่ยนแปลงความถี่ของยีนที่เกิดจากอิทธิพลของประชากรขนาดเล็ก (genetic drift) จะเห็นได้ว่าการเปลี่ยนแปลงความถี่ของยีนที่เกิดจากอิทธิพลของประชากรขนาดเล็ก (genetic drift) จะเห็นได้ว่าการเปลี่ยนแปลงความถี่ของยีนที่เกิดจาก
โครงการหนังสืออิเล็กทรอนิกส์ด้านการเกษตร เฉลิมพระเกียรติพระบาทสมเด็จพระเจ้าอยู่หัว
กลายยีน การอพยพ และการคัดเลือกจะเป็นการคัดเลือกที่เป็นแบบมีทิศทางซึ่งประชากรจะมีขนาดใหญ่
กลายยีน การอพยพ และการคัดเลือกจะเป็นการคัดเลือกที่เป็นแบบมีทิศทางซึ่งประชากรจะมีขนาดใหญ่ กลายยีน การอพยพ และการคัดเลือกจะเป็นการคัดเลือกที่เป็นแบบมีทิศทางซึ่งประชากรจะมีขนาดใหญ่ กลายยีน การอพยพ และการคัดเลือกจะเป็นการคัดเลือกที่เป็นแบบมีทิศทางซึ่งประชากรจะมีขนาดใหญ่ กลายยีน การอพยพ และการคัดเลือกจะเป็นการคัดเลือกที่เป็นแบบมีทิศทางซึ่งประชากรจะมีขนาดใหญ่
ในขณะที่ประชากรที่มีขนาดเล็กจะไม่มีทิศทางในการเกิดการเปลี่ยนแปลงความถี่ของยีนซึ่งโอกาสที่ยีนจะ
ในขณะที่ประชากรที่มีขนาดเล็กจะไม่มีทิศทางในการเกิดการเปลี่ยนแปลงความถี่ของยีนซึ่งโอกาสที่ยีนจะในขณะที่ประชากรที่มีขนาดเล็กจะไม่มีทิศทางในการเกิดการเปลี่ยนแปลงความถี่ของยีนซึ่งโอกาสที่ยีนจะในขณะที่ประชากรที่มีขนาดเล็กจะไม่มีทิศทางในการเกิดการเปลี่ยนแปลงความถี่ของยีนซึ่งโอกาสที่ยีนจะในขณะที่ประชากรที่มีขนาดเล็กจะไม่มีทิศทางในการเกิดการเปลี่ยนแปลงความถี่ของยีนซึ่งโอกาสที่ยีนจะ
112
พันธุศาสตร์ประชากร
ปรากฏได้นั้นอาศัยความน่าจะเป็นในการคงอยู่ของยีน ซึ่งประชากรที่มีขนาดเล็กนี้ จะมีจ านวนของประชากร
สำาหรับการปรับปรุงพันธุ์
ปรากฏได้นั้นอาศัยความน่าจะเป็นในการคงอยู่ของยีน ซึ่งประชากรที่มีขนาดเล็กนี้ จะมีจ านวนของประชากรปรากฏได้นั้นอาศัยความน่าจะเป็นในการคงอยู่ของยีน ซึ่งประชากรที่มีขนาดเล็กนี้ จะมีจ านวนของประชากรปรากฏได้นั้นอาศัยความน่าจะเป็นในการคงอยู่ของยีน ซึ่งประชากรที่มีขนาดเล็กนี้ จะมีจ านวนของประชากรปรากฏได้นั้นอาศัยความน่าจะเป็นในการคงอยู่ของยีน ซึ่งประชากรที่มีขนาดเล็กนี้ จะมีจ านวนของประชากร
ให้เท่ากับ N เพราะฉะนั้นจ านวนของยีนที่เกิดขึ้นทั้งหมดจะเท่ากับ 2N เนื่องจากยีน 1 ต าแหน่งจะมี 2 อัลลีล
ให้เท่ากับ N เพราะฉะนั้นจ านวนของยีนที่เกิดขึ้นทั้งหมดจะเท่ากับ 2N เนื่องจากยีน 1 ต าแหน่งจะมี 2 อัลลีล ให้เท่ากับ N เพราะฉะนั้นจ านวนของยีนที่เกิดขึ้นทั้งหมดจะเท่ากับ 2N เนื่องจากยีน 1 ต าแหน่งจะมี 2 อัลลีล ให้เท่ากับ N เพราะฉะนั้นจ านวนของยีนที่เกิดขึ้นทั้งหมดจะเท่ากับ 2N เนื่องจากยีน 1 ต าแหน่งจะมี 2 อัลลีล ให้เท่ากับ N เพราะฉะนั้นจ านวนของยีนที่เกิดขึ้นทั้งหมดจะเท่ากับ 2N เนื่องจากยีน 1 ต าแหน่งจะมี 2 อั
กฎในกำรใช้สัมประสิทธิ์ค่ำบำท
และก าหนดให้ยีน a เป็น ค่า q ซึ่งจากประชากรที่มีการผสมกันอย่างสุ่มแล้ว ความถี่ของยีน a ในรุ่นลูกจะมี
และก าหนดให้ยีน a เป็น ค่า q ซึ่งจากประชากรที่มีการผสมกันอย่างสุ่มแล้ว ความถี่ของยีน a ในรุ่นลูกจะมีและก าหนดให้ยีน a เป็น ค่า q ซึ่งจากประชากรที่มีการผสมกันอย่างสุ่มแล้ว ความถี่ของยีน a ในรุ่นลูกจะมีและก าหนดให้ยีน a เป็น ค่า q ซึ่งจากประชากรที่มีการผสมกันอย่างสุ่มแล้ว ความถี่ของยีน a ในรุ่นลูกจะมีและก าหนดให้ยีน a เป็น ค่า q ซึ่งจากประชากรที่มีการผสมกันอย่างสุ่มแล้ว ความถี่ของยีน a ในรุ่นลูกจะมี
1. Law of complete determination
โอกาสที่เกิดขึ้นจ านวน 2N+1 ค่า ซึ่งมีการกระจายตัว binomial คือ (a+b) โดยเมื่อความถี่ของยีน A และ a 2 2 2
2
โอกาสที่เกิดขึ้นจ านวน 2N+1 ค่า ซึ่งมีการกระจายตัว binomial คือ (a+b) โดยเมื่อความถี่ของยีน A และ a โอกาสที่เกิดขึ้นจ านวน 2N+1 ค่า ซึ่งมีการกระจายตัว binomial คือ (a+b) โดยเมื่อความถี่ของยีน A และ a โอกาสที่เกิดขึ้นจ านวน 2N+1 ค่า ซึ่งมีการกระจายตัว binomial คือ (a+b) โดยเมื่อความถี่ของยีน A และ a โอกาสที่เกิดขึ้นจ านวน 2N+1 ค่า ซึ่งมีการกระจายตัว binomial คือ (a+b) โดยเมื่อความถี่ของยีน A และ a
2
2N 2N! 2N 2N−a a 2N 2N2N 2N! 2N!2N!
แล้วจะมีโอกาสที่เกิดความถี่ของยีน a ในรุ่นลูก คือ a/2N นั่นคือ [แล้วจะมีโอกาสที่เกิดความถี่ของยีน a ในรุ่นลูก คือแล้วจะมีโอกาสที่เกิดความถี่ของยีน a ในรุ่น
2N!
2N−a a2N−a a
2N−a a2N−a a
เป็นกฎที่กล่าวถึงการแสดงออกของจีโนไทป์ที่เกิดจากผลรวมอิทธิพลของเซลล์สืบพันธุ์ a2N−a a
2N
q =
แล้วจะมีโอกาสที่เกิดความถี่ของยีน a ในรุ่นลูก คือ a/2N นั่นคือ [ p
แล้วจะมีโอกาสที่เกิดความถี่ของยีน a ในรุ่นลูก คือ a/2N นั่นคือ [ ] p 2N−a a ] p q ] p a/2N นั่นคือ [ลูก คือ a/2N นั่นคือ [ p 2N−a a2N−a a−a q q p=q = q p p q q
q = q =] p] p
(
ก�าหนดให้ a (2N−a)!a! a a (2N−a)!a! (2N−a)!a! (2N−a)!a!2N−a)!a!
a a
โดย โดย โดย โดย โดย
G = จีโนไทป์
p = ความถี่ของยีน A p = ความถี่ของยีน A = ความถี่ของยีน A p p = = ความถี่ของยีน A = ความถี่ของยีน A
p
g
เซลล์สืบพันธุ์
และ g
2
1
q = ความถี่ของยีน a q = ความถี่ของยีน a = ความถี่ของยีน a q q = ความถี่ของยีน a = ความถี่ของยีน a
q
และ a
อิทธิพลของเซลล์สืบพันธุ์
a
a = โอกาสที่จะพบยีน a a = โอกาสที่จะพบยีน a = โอกาสที่จะพบยีน a a a = = โอกาสที่จะพบยีน a = โอกาสที่จะพบยีน a
a
2
1
r
ความสัมพันธ์ของเซลล์สืบพันธุ์ g และ g
N = จ านวนต้นในประชากร N g = จ านวนต้นในประชากร = จ านวนต้นในประชากร N N = = จ านวนต้นในประชากร = จ านวนต้นในประชากร
N
g
1 2 1 2
และได้มีการหาความแปรปรวนของความถี่ของยีนในประชากร ซึ่งเป็นผลต่างของค่าความถี่ของยีน a
และได้มีการหาความแปรปรวนของความถี่ของยีนในประชากร ซึ่งเป็นผลต่างของค่าความถี่ของยีน a และได้มีการหาความแปรปรวนของความถี่ของยีนในประชากร ซึ่งเป็นผลต่างของค่าความถี่ของยีน a และได้มีการหาความแปรปรวนของความถี่ของยีนในประชากร ซึ่งเป็นผลต่างของค่าความถี่ของยีน a และได้มีการหาความแปรปรวนของความถี่ของยีนในประชากร ซึ่งเป็นผลต่างของค่าความถี่ของยีน a
รูปแบบแสดงของจีโนไทป์ คือ G = a g + a g
2 2
1 1
ของแต่ละสายพันธุ์ (q ) กับความถี่ของยีน a ของประชากรเดิม (q) คือ δ = (q − q) ซึ่งหาได้จากสูตร
ของแต่ละสายพันธุ์ (q ) กับความถี่ของยีน a ของประชากรเดิม (q) คือ δ = (q − q) ซึ่งหาได้จากสูตร ของแต่ละสายพันธุ์ (q ) กับความถี่ของยีน a ของประชากรเดิม (q) คือ δ = (q − q) ซึ่งหาได้จากสูตร ของแต่ละสายพันธุ์ (q ) กับความถี่ของยีน a ของประชากรเดิม (q) คือ δ = (q − q) ซึ่งหาได้จากสูตร ของแต่ละสายพันธุ์ (q ) กับความถี่ของยีน a ของประชากรเดิม (q) คือ δ = (q − q) ซึ่งหาได้จากสูตร
เมื่อท�าการหาความแปรปรวนจะได้
j j j q j j j q jq j q q j j
pq
pq
(1 − q)q (1 − q)q pqpq
(1 − q)q1 − q)q
σ 2 2 = pq (1 − q)q a + a = σ 2 2 + 2a a r = σ 2 2 = = = (
=
2 2
2
2
=
==
σ
=σ
G 2N 2N 1 q g δ 1 2 q g δ 2N g g g δ q δ q g 2 2N2N
δ q
2N 2
1 2 11 2
2N 2N2N
2N
r
=
σ = ค่าความแปรปรวนของผลต่างของความถี่ของยีน a จะเป็นค่า F
σ g g
= ค่าความแปรปรวนของผลต่างของความถี่ของยีน a ค่าความแปรปรวนของผลต่างของความถี่ของยีน a ค่าความแปรปรวนของผลต่างของความถี่ของยีน a ค่าความแปรปรวนของผลต่างของความถี่ของยีน a
= =
=
2
2
2
σ
σ σ
2 2
δ q δ q 2
δ q 1 δ q δ q
ซึ่งผลรวมของอิทธิพลจะเท่ากับ 1 เสมอ และเมื่อมีการ standardized จะได้ค่า
ตัวอย่าง ท าการสุ่มเมล็ดพืช 50 เมล็ด จากประชากรขนาดใหญ่ โดยก าหนดให้ความถี่ของยีน a มีค่าเท่ากับ
ตัวอย่าง ท าการสุ่มเมล็ดพืช 50 เมล็ด จากประชากรขนาดใหญ่ โดยก าหนดให้ความถี่ของยีน a มีค่าเท่ากับ ตัวอย่าง ท าการสุ่มเมล็ดพืช 50 เมล็ด จากประชากรขนาดใหญ่ โดยก าหนดให้ความถี่ของยีน a มีค่าเท่ากับ ตัวอย่าง ท าการสุ่มเมล็ดพืช 50 เมล็ด จากประชากรขนาดใหญ่ โดยก าหนดให้ความถี่ของยีน a มีค่าเท่ากับ ตัวอย่าง ท าการสุ่มเมล็ดพืช 50 เมล็ด จากประชากรขนาดใหญ่ โดยก าหนดให้ความถี่ของยีน a มีค่าเท่ากับ
2
2
1 = a + a + 2a a r
1 2 g g
0.5 และความถี่ของยีน A เท่ากับ 0.5 แล้วจะพบการกระจายตัวของความถี่ขอ 2งยีนที่มีค่าความน่าจะเป็นของ
0.5 และความถี่ของยีน A เท่ากับ 0.5 แล้วจะพบการกระจายตัวของความถี่ของยีนที่มีค่าความน่าจะเป็นของ0.5 และความถี่ของยีน A เท่ากับ 0.5 แล้วจะพบการกระจายตัวของความถี่ของยีนที่มีค่าความน่าจะเป็นของ0.5 และความถี่ของยีน A เท่ากับ 0.5 แล้วจะพบการกระจายตัวของความถี่ของยีนที่มีค่าความน่าจะเป็นของ0.5 และความถี่ของยีน A เท่ากับ 0.5 แล้วจะพบการกระจายตัวของความถี่ของยีนที่มีค่าความน่าจะเป็นของ
1
1 2
การกระจายตัวดังนี้ จากสูตตร การกระจายตัวดังนี้ จากสูตตร การกระจายตัวดังนี้ จากสูตตร การกระจายตัวดังนี้ จากสูตตร การกระจายตัวดังนี้ จากสูตตร
2. Independent cause กล่าวถึงในกรณีที่ g และ g ไม่มีความสัมพันธ์กัน นั่นคือ r = 0
g g
pq
pq
pq
σ = σ σ 2 = = σ σ = = pqpq 1 2
1
2
2 2
2
2
δ q δ q δ q δ q δ q
2N 2N 2N 2N2N
แทนค่า แทนค่า แทนค่า แทนค่า แทนค่า
σ = 0.5 × 0.5 σ 2 = 0.5 × 0.50.5 × 0.5 0.5 × 0.50.5 × 0.5
2
2
2 2
δ q δ q σ δ q = σ σ = =
δ q δ q
2(50) 2(50) 2(50) 2(50)2(50)
0.5 × 0.50.5 × 0.5
σ = √ 0.5 × 0.5 σ = √ = σ σ = = 0.5 × 0.50.5 × 0.5
σ
δ q δ q δ q δ q √ δ q √ √
2(50) 2(50) 2(50) 2(50)2(50)