Page 158 -
P. 158

โครงการหนังสืออิเล็กทรอนิกส์ด้านการเกษตร เฉลิมพระเกียรติพระบาทสมเด็จพระเจ้าอยู่หัว



               Glick,  B.R.,  C.L.  Patten,  G.  Holguin  and  D.M.  Penrose.  1999.  Biochemical  and  genetic  mechanisms
                       used  by  plant  growth  promoting  bacteria.  Imperial  College  Press,  Waterloo,  Ontario,
                       Canada. 276 p.

               Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley and S.T.Williams1 994. Bergey’s Manual of Determinative
                        Bacteriology, 9th Ed. Williams & Wilkins, Baltimore, MS, USA.
               Hosseini, S. and S.O. Martinez-Chapa. 2017. Fundamentals of MALDI-ToF-MS Analysis. Springer Nature
                        Singapore Pte Ltd. 68 p.
               Jensen, H. L. 1954. The Azotobacteriaceae. Bacteriological Reviews 18(4): 195–214.
               Jia,  R.Z.,  R.J.  Zhang, Q.  Wei, W.F.  Chen, I.K.  Cho,  W.X. Chen  and  Q.X. Li.  2015.  Identification and
                       Classification of Rhizobia by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass
                       Spectrometry. J Proteomics Bioinform. 8(6): 98-107.
               Kapagam,  T.  and  P.K.  Nagalakshmi.  2014.  Isolation  and  characterization  of  phosphate  solubilizing
                       microbes from agriculture soil. Int. J. Curr. Microbiol. App. Sci. 3(3): 601–614.
               Kapoor, I.J. and B. Kar. 1989. Antagonism of Azotobacter and Bacillus to Fusarium Oxysporumlycopersici.
                       Indian Phytopathol 42(3): 401–404.
               Khambalker, P. and R. Sridar. 2015. Isolation and Characterization of Nitrogen Fixing Burkholderia sp.
                       Int. J. Agri. Envi. Biotech. Plant Pathology. 681–689.
               Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from

                       rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 13(3): 638–649.
               Paleg, L.G. 1965. Physiological effects of the gibberellins. Annu. Rev. Plant Physiol. 16: 291.
               Prisa  Domenico.  2019.  Effect  of  Azospirillum  brasilense  on  garlic  (Allium  sativum  L.)  cultivation.
                       WJARR. 02(03): 008–013.
               Shihui, Y., Qiu, Z., Jianhua, G., Amy, O.C., Bernard, R.G., Mark, I., Donald, A.C. and H.Y. Ching. 2006.
                       Effect  of  indole–3–acetic  acid  biosynthesis  on  multiple  virulence  factors  of  Erwinia
                       chrysanthemi 3937. Appl. Environ. Microbiol. 4: 1,079–1,088.
               Spaepen, S., Dobbelaere, S., Croonenborghs, A. and J. Vanderleyden. 2008. Effect of Azospirillum
                       brasilense indole–3–acetic acid production on inoculated wheat plants. Plant Soil 312: 15–23.
               Ying,  J.,  Yue,  W.,  Wensi,  X.,  Yanhong,  C.,  Jiandong,  C.,  Li,  X.,  Feng,  H.  and  L.  Huixin.  2012.  IAA–
                       producing  bacteria  and  bacterial–feeding  nematodes  promote  Arabidopsis  thaliana  root
                       growth in natural soil. Eur. J. Soil Biol. 52: 20–26.
               Ziegler, D., A. Mariotti, V. Pfluger, M. Saad, G. Vogel, M. Tonolla and X. Perret.  2012.  In Situ identification
                       of plant-invasive bacteria with MALDI-TOF mass spectrometry.  Plos one 7 (5): e37189.











                                                          150
   153   154   155   156   157   158   159   160   161   162   163