Page 58 -
P. 58

โครงการหนังสืออิเล็กทรอนิกส์ด้านการเกษตร เฉลิมพระเกียรติพระบาทสมเด็จพระเจ้าอยู่หัว


                                                                                                           54


                       ตัวแปร ECT แสดงการเบี่ยงเบนออกจากความสัมพันธ์เชิงดุลยภาพในระยะยาวของตัวแปรราคาต้นทาง

                                                                     p
                                                                                              p
               (error correction term) โดยที่  ECT out,t-1  =  p out,t-1   −  0   −  1 in,t-1  เมื่อ  p out,t-1   =  0   +  1 in,t-1  คือสมการ
               แสดงความสัมพันธ์เชิงดุลยภาพในระยะยาวระหว่างราคาต้นทางและราคาปลายทาง  (cointegration vector)
                                                                                                 +
               สำหรับแบบจำลอง (6.1) จะมีตัวแปรแสดงการเบี่ยงเบนออกจากดุลยภาพอยู่สองแบบ คือ  ECT   out,t 1 −   แสดงถึง
                                                                                                    −
                                                                                p
               กรณีราคาต้นปลายทางอยู่สูงกว่าราคาดุลยภาพในระยะยาว  (p out,t-1   −  0   −  1 in,t-1    ) 0  และ  ECT out,t 1−   แสดง
                                                                                  p
               ถึงกรณีราคาปลายทางอยู่ต่ำกว่าราคาดุลยภาพในระยะยาว  (p  out,t-1   −  0   −  1 in,t-1    ) 0 และมีค่าสัมประสิทธิ์
               ความเร็วในการปรับตัวกลับเข้าสู่ดุลยภาพคือ   และ   ตามลำดับ ค่าสัมประสิทธิ์ดังกล่าวจะต้องมีค่าอยู่
                                                                 −
                                                        +
                                                        out
                                                                 out
               ระหว่าง -1 จนถึง 0 ถ้าค่าสัมประสิทธิ์การปรับตัวมีค่าเข้าใกล้ -1 แสดงว่าราคาจะมีการปรับตัวเพื่อกลับเข้าสู่ดุลย
               ภาพอย่างรวดเร็ว ในทางตรงกันข้ามถ้าค่าสัมประสิทธิ์การปรับตัวมีค่าเข้าใกล้ 0 แสดงว่าราคาจะมีการปรับตัวเพื่อ
               กลับเข้าสู่ดุลยภาพอย่างเชื่องช้า และถ้าหากว่า   out     out  แสดงว่าความเร็วในการปรับตัวของราคาเพื่อกลับเข้าสู่
                                                              −
                                                        +
                                                                                   −
               ดุลยภาพในช่วงปรับขึ้นและช่วงปรับลงมีความไม่สมมาตร แต่ถ้าพบว่า   out  =   out  หมายความความเร็วในการ
                                                                              +
               ปรับตัวของราคาเพื่อกลับเข้าสู่ดุลยภาพในระยะยาวระหว่างทิศทางสูงขึ้นและทิศทางลดลงมีความสมมาตร
                       นอกจากนั้นค่าสัมประสิทธิ์      และ    สามารถนำมาใช้เพื่อคำนวณผลกระทบจากการ
                                                                −
                                                       +
                                                 out,j
                                                       in,j
                                                                in,j
                                                                                   M           K     
               เปลี่ยนแปลงราคาต้นทางที่มีต่อราคาปลายทางในระยะยาวได้อีกด้วย โดยที่      in,j     1−    out,j     คือค่า
                                                                                       +
                                                                                   j=1         j=1   
               ความยืดหยุ่นในระยะยาว (long run elasticity) ของราคาปลายทางต่อการเปลี่ยนแปลงของราคาต้นทางเพิ่มขึ้น
                                     M           K     
               ร้อยละหนึ่ง ในขณะที่      in,j     1−    out,j     คือค่าความยืดหยุ่นในระยะยาว ซึ่งวัดผลกระทบของการ
                                         −
                                     j=1         j=1   
               เปลี่ยนแปลงของราคาต้นทางลดลงร้อยละหนึ่งต่อราคาปลายทาง ถ้าหากว่า            in,j   +      in,j   แสดงว่า
                                                                                                   −
               ผลกระทบในระยะยาวสำหรับกรณีราคาต้นทางปรับขึ้นกับกรณีราคาต้นทางปรับลงมีความไม่สมมาตร แต่ถ้าพบว่า
                    in,j   +  =    in,j   ผลกระทบในระยะยาวมีความสมมาตรทั้งในกรณีราคาต้นทางปรับขึ้นและลดลง
                             −
                       เมื่อพิจาณาถึงความเป็นไปได้ของความไม่สมมาตรในการปรับตัวในสมการ (6.1) ดังที่กล่าวมาแล้ว จำเป็น

               จะต้องใช้วิธีการทดสอบเชิงสถิติของ Wald เพื่อทดสอบค่าสัมประสิทธิ์ โดยมีสมมติฐานดังต่อไปนี้

                                                             1 
                                0 
                              H :    M    in,j   +  =  N    in,j      H :    M    in,j   +    N    in,j         (สมมติฐาน 1)
                                                 −
                                                                             −
                                    j=1     j=1                 j=1      j=1
                              H :    0  out  =   out         H :    1  out     out            (สมมติฐาน 2)
                                          −
                                     +
                                                                       −
                                                                 +
                       สมมติฐาน 1 เป็นการทดสอบว่าผลกระทบระยะยาวเมื่อราคาต้นทางปรับขึ้นและเมื่อราคาต้นทางปรับลง
               มีความสมมาตรหรือไม่ ในขณะที่สมมติฐาน 2 เป็นการทดสอบว่าความเร็วในการปรับตัวเพื่อกลับเข้าสู่ดุลยภาพ
               เมื่อราคาอยู่สูงกว่าหรือต่ำกว่าดุลยภาพระยะยาวมีความสมมาตรหรือไม่ ผลการทดสอบสมมติฐาน 1 และ 2
               สามารถแยกออกได้เป็น 4 กรณี ดังนี้
   53   54   55   56   57   58   59   60   61   62   63