Page 209 -
P. 209
ิ
ื
ิ
ิ
โครงการหนังสออเล็กทรอนกสด้านการเกษตร เฉลมพระเกียรตพระบาทสมเด็จพระเจ้าอยู่หัว
์
ิ
[70] C. Niamnuy, P. Prapaitrakul, N. Panchan, A. Seubsai, T. Witoon,
S. Devahastin, M. Chareonpanich. 2020. Synthesis of dimethyl ether via
CO hydrogenation: effect of the drying technique of alumina on
2
properties and performance of alumina-supported copper catalysts.
ACS Omega. 5(5):2334–2344.
[71] T. Witoon, T. Numpilai, N. Dolsiririttigul, N. Chanlek, Y. Poo-arporn,
C.K., Cheng, B.V. Ayodele, M. Chareonpanich, J. Limtrakul. 2022.
Enhanced activity and stability of SO42−/ZrO2 by addition of Cu
combined with CuZnOZrO for direct synthesis of dimethyl ether from
2
CO hydrogenation. Int. J. Hydrog. Energy. 47(98): 41374–41385.
2
[72] W. Donphai, T. Witoon, K. Faungnawakij, M. Chareonpanich. 2016.
Carbon-structure affecting catalytic carbon dioxide reforming of
methane reaction over Ni-carbon composites. J. CO2 Util. 16: 245–256.
[73] P. Phanawadee, K. Laipraseard, G.S. Yablonsky, D. Constales,
W. Jamroonrote, P. Jaipet. 2017. Estimation of the remaining lifetime
of deactivated catalyst via the spatial average catalyst activity
illustrated by the water–gas shift and steam methane reforming
processes. React. Kinet. Mech. Catal. 121(2): 371–385.
[74] T. Chompupun, S. Limtrakul, T. Vatanatham, C. Kanhari,
P.A. Ramachandran. 2018. Experiments, modeling and scaling-up of
membrane reactors for hydrogen production via steam methane
reforming. Chem. Eng. Process.: Process Intensif. 134:124–140.
[75] J. Chaisamphao, S. Kiatphuengporn, K. Faungnawakij, W. Donphai,
M. Chareonpanich. 2021. Effect of modified nanoclay surface supported
nickel catalyst on carbon dioxide reforming of methane. Top. Catal.
64(5–6): 431–445.
193