Page 203 -
P. 203

ิ
                                    ิ
                                       ์
                                                       ิ
            โครงการหนังสออเล็กทรอนกสด้านการเกษตร เฉลมพระเกียรตพระบาทสมเด็จพระเจ้าอยู่หัว
                         ื
                            ิ
               [24]   N. Sritrakul, S. Nitisinprasert, S. Keawsompong. 2017. Evaluation of
                     dilute acid pretreatment for bioethanol fermentation from sugarcane

                     bagasse pith. Agr. Nat. Resour. 51(6):512–519.
               [25]   K. Sriroth, K. Piyachomkwan, S. Wanlapatit, S. Nivitchanyong. 2010.

                     The promise of a technology revolution in cassava bioethanol:
                     From Thai practice to the world practice. Fuel 89(7): 1333–1338.

               [26]   T. Lomthong, N. Lertwattanasakul, V. Kitpreechavanich. 2016.

                     Production of raw starch degrading enzyme by the thermophilic
                     filamentous bacterium Laceyella sacchari LP175 and its application for
                     ethanol production from dried cassava chips. Starch/Stärke 68(11–12):

                     1264–1274.

               [27]   S. Trakarnpaiboon, N. Srisuk, K. Piyachomkwan, K. Sakai,
                     V. Kitpreechavanich. 2017. Enhanced production of raw starch degrading

                     enzyme using agro-industrial waste mixtures by thermotolerant
                     Rhizopus microsporus for raw cassava chip saccharification in ethanol
                     production. Prep. Biochem. Biotechnol. 47(8): 813–823.

               [28]   P. Siramon, V. Punsuvon, P. Vaithanomsat. 2018. Production of bioeth-

                     anol from oil palm empty fruit bunch via acid impregnation-steam
                     explosion pretreatment. Waste Biomass Valorization 9(8): 1407–1414.

               [29]   A. Chirapart, J. Praiboon, P. Puangsombat, C. Pattanapon, N. Nunraksa.
                     2014. Chemical composition and ethanol production potential of Thai

                     seaweed species. J. Appl. Phycol. 26(2): 979–986.

               [30]   N. Nunraksa, S. Rattanasansri, J. Praiboon, A. Chirapart. 2019. Proximate
                     composition and the production of fermentable sugars, levulinic acid,
                     and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated

                     in earthen ponds. J. Appl. Phycol. 31(1): 683–690.

               [31]   P. Vaithanomsat, S. Chuichulcherm, W. Apiwatanapiwat. 2009. Bioethanol
                     production from enzymatically saccharified sunflower stalks using steam

                     explosion as pretreatment. World Acad. Eng. Technol. 37: 140–143.



                                                                                             187
   198   199   200   201   202   203   204   205   206   207   208