Page 131 -
P. 131

ิ
                                                ์
                                    ิ
                  โครงการหนังสออเล็กทรอนกสด้านการเกษตร เฉลมพระเกียรตพระบาทสมเด็จพระเจ้าอยู่หัว
                                 ื
                                                                   ิ
                                                                              ิ

           Shokri D, Emtiazi G. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-

              fixing bacteria and its optimization by Taguchi design. Curr Microbiol. 2010;61:217–225.

           Sitbon F, Astot C, Edlund A, Crozier A, Sandberg G. The relative importance of tryptophan-dependent

              and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative
              growth. Planta. 2000;211:715-721.

           Spaepen S, Vanderleyden J. Auxin and plant-microbe interactions. CSH Perspect Biol. 2011;doi:10.1101/

              cshperspect.a001438.

           Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant

              signaling. FEMS Microbiol Rev. 2007;31:425–448.
           Spartz AK, Gray WM. Plant hormone receptors: new perceptions. Genes Dev. 2008;22:2139–2148.

           Sridevi M, Mallaiah KV. Bioproduction of indole acetic acid by Rhizobium strains isolated from root

              nodules of green manure crop, Sesbania sesban (L.) Merr. Iran J Biotechnol. 2007;5(3): 178-182.
      บทที่ 4   Srisuk N, Sakpuntoon V, Nutaratat P. Production of indole-3-acetic acid by Enterobacter sp. DMKU-



              RP206 using sweet whey as a low-cost feed stock. J Microbiol Biotechn. 2018;28(9):1511–1516.
           Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY. Indole-3-acetic acid-producing yeasts in the

              phyllosphere of the carnivorous plant Drosera indica L. PLoS One. 2014;.doi.org/10.1371/journal.

              pone.0114196

           Swain MR, Ray RC. Optimization of cultural conditions and their statistical interpretation for production

              of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J Sci Ind Res. 2008;
              97(8):622-628.

           Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y,

              Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J. Rapid synthesis of auxin via a new

              tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008; 133:164–

              176.
           Teale WD, Paponov IA, Palme K. Auxin in action: signaling, transport and the control of plant growth

              and development. Nat Rev Mol Cell Bio. 2006;7:847-859.

           Theunis M, Kobayashi H, Broughton WJ, Prinsen E. Flavonoids, NodD1, NodD2, and nod-box NB15

              modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in
              Rhizobium sp. strain NGR234. Mol Plant Microbe In. 2004;17:1153–1161.

           Tsavkelova EA, Yu. Klimova S, Cherdyntseva TA, and Netrusov AI. Microbial producers of plant growth

              stimulators and their practical use: A review. Appl Biochem Microbiol. 2006;42(2):117–126.







    122  การผลิตกรดอินโดล-3-แอซีติกโดยยีสต
   126   127   128   129   130   131   132   133   134   135   136