Page 129 -
P. 129

ิ
                                                ์
                                    ิ
                  โครงการหนังสออเล็กทรอนกสด้านการเกษตร เฉลมพระเกียรตพระบาทสมเด็จพระเจ้าอยู่หัว
                                 ื
                                                                   ิ
                                                                              ิ

           Nassar AH, El-Tarabily KA, Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate

              of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fert Soils. 2005;42,97–

              108.

           Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. Plant growth-promoting traits of epiphytic and
              endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 2014;118:683

              – 694.

           Nutaratat P, Amsri W, Srisuk N, Arunrattiyakorn P, Limtong S. Indole-3-acetic acid production by newly

              isolated red yeast Rhodosporidium paludigenum. J Gen Appl Microbiol. 2015;61:1–9.

           Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. Indole-3-acetic acid biosynthetic pathways in the
              basidiomycetous yeast Rhodosporidium paludigenum. Arch Microbiol. 2016;198(5):429-437.

           Nutaratat P, Monprasit A, Srisuk N. High-yield production of indole-3-acetic acid by Enterobacter sp.

      บทที่ 4   DMKU-RP206,  a  rice  phyllosphere  bacterium  that  possesses  plant  growth-promoting  traits.

              3Biotech. 2017;7:305. https://doi.org/10.1007/s13205-017-0937-9

           Park JM, Radhakrishnan R, Kang SM, Lee IJ. IAA Producing Enterobacter sp. I-3 as a potent bio-
              herbicide candidate for weed control: A special reference with lettuce growth inhibition. Indian J

              Microbiol. 2015;55(2):207–212.

           Patil NB, Gajbhiye M, Ahiwale SS, Gunjal AB, Kapadnis BP. Optimization of Indole 3 acetic acid (IAA)

              production by Acetobacter diazotrophicus L1 isolated from sugarcane. Int J Environ Sci. 2011;2(1):

              295-302.
           Pedraza RO, Ramírez-Mata A, Xiqui ML, Baca BE. Aromatic amino acid aminotransferase activity and

              indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett. 2004;

              233(1):15-21.

           Perley JW, Stowe BB. On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan

              by way of tryptamine. Plant Physiol. 1966;41:234–237.
           Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber

              S, McSteen P. vanishing tassel2 Encodes a grass specific tryptophan aminotransferase required for

              vegetative and reproductive development in maize. Plant Cell. 2011;23:550–566.

           Piotrowski M, Schonfelder S, Weiler EW. The Arabidopsis thaliana isogene NIT4 and its orthologs in
              tobacco encode beta-cyano-L-alanine hydratase/nitrilase. J Biol Chem. 2001;276:2616–2621.

           Pollmann S, Neu D, Weiler EW. Molecular cloning and characterization of an amidase from Arabidopsis

              thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic

              acid. Phytochemistry. 2003;62: 293–300.




    120  การผลิตกรดอินโดล-3-แอซีติกโดยยีสต
   124   125   126   127   128   129   130   131   132   133   134